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INTRODUCTION 

Micro algae biovolumes (BV) and surface areas (SA) are used in many ecological studies. 
Many water quality indices are based on micro algae biovolumes. Biovolumes are converted 
to concentration of organic carbon or chlorophyll a. Surface to volume ratio allows evaluating 
cell physiological status and estimating matter fluxes through cell walls.  

The traditional approach to calculation of micro algae BV and SA is based on the 
approximation of cell shape by similar geometric figures (Hillebrand et al. 1999). The main 
drawback of this method is the discrepancy between figures and the real cell shape. 
Complex shaped micro algae are approximated by combinations of geometric figures. The 
more complex a cell is, the more figures should be included into the combination which 
complicates mathematical equations used for cell BV and SA estimates. Instead of geometric 
figures, we propose to use 3D-models that allow simulating complex micro algae with 
different degrees of accuracy. 

3D modeling of many groups of micro algae (Dinoflagellates, Desmids) can be time-
consuming; geometric figures remain the best alternative for them. Diatom shapes are 
simpler; their frustules are clear cut and can be easily imitated by 3D models. A technique for 
3D diatom model construction has been described and the results of the comparison of the 
two methods (similar geometric shapes and 3D modeling) are being presented in the paper. 

MATERIAL & METHODS 

A 3D diatom model was constructed from digitized projections of a diatom cell (cell outline) in 
valvar, apical and transapical planes. Valvar and apical outlines were considered as pivots 
and were placed orthogonal to each other with the valvar-outline-plane corresponding to the 
xy-plane of a coordinate system and the apical-outline-plane to the orthogonal zx-plane. The 
pivot outlines were aligned as such that their centers were located in the coordinate system’s 
origin. The transapical outline was placed orthogonal to the pivots. It was discretely moved 
along them and scaled as such that on every step its length and width fitted the breadths of 
pivot outlines in the current point. As a result, the 3D skeleton formed by the consequence of 
scaled transapical outlines (skeleton sections) was created.  

To form 3D model, the skeleton was covered by 3D surface. Every adjacent section of 
the skeleton was connected by oriented triangles using the following algorithm. Let pi, pi+1 
were two neighbor points on one section and pk, pk+1 were neighbor points on another one. 
They were linked by two oriented triangles consisting of points (pi, pk, pk+1) and (pi, pk+1, pi+1). 
This operation was repeated for all points on every section. After the procedure finished, the 
created model had only two open ends – the first and the last sections, which were covered 
by a surface, using triangulation algorithm (O’Rourke 1994). 

The 3D model surface area was calculated as the sum of all triangle areas. The model 
volume was the sum of the volumes of all triangular pyramids constructed in the following 
manner: the model triangles served as pyramid bases and an arbitrary selected point served 
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as the top for all pyramids. The pyramids volumes had a sign, therefore when they were 
summarized, superfluous ones were mutually annihilated and only the model volume 
remained. Triangular pyramid volume was calculated as 
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where (xk, yk, zk) were coordinates of vectors directed from pyramid top to pyramid base 
vertices; | | meant a determinant. 

The constructed model simulates only those cells, which outlines had been digitized. 
To imitate cells with slightly different morphology (frustule proportions) the model should be 
deformed or reconstructed. The method for deformation of created 3D microalgae was 
proposed by Lyakh (2002). Another new approach is based on the reconstruction of 3D 
models from initial contours, which are fit to the studied cell outlines.  

The model of cell contour consisted of joined cubic Bezier curves. The shape of cubic 
Bezier curve is determined by the positions of four control points P0, …, P3  (Bourke 1996): 
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The first and the last curve points were named key-points; the second and the third were 
control points. Two vectors directed from the first to the second and from the last to the third 
points were tangent vectors. The Bezier curve had some advantages over the other curves: 
(1) the local deformation of curve shape was fulfilled only by the displacement of control 
points; (2) to smoothly join two Bezier curves, their tangent vectors should be collinear in the 
point of connection.  

Most diatoms have the shape of a cylinder. Their valves correspond to cylinder bases; 
girdles form cylinder lateral surfaces. For calculation BV and SA of those species, it is not a 
necessity to create 3D models, only the models of cell valves are needed. In this paper only 
those cylindrical diatom models are considered. 

Modeled valves were divided into two or four equal sectors depending on their 
symmetry and only one sector of each valve was used for modeling. Key-points were located 
on those parts of the sector, whose sizes were changed during cell life-cycle. We did not 
consider small morphological changes in valve outline because they had no significant 
influence on the resulted volume and surface area. Key-points were connected by cubic 
Bezier curves that followed sector shape. Two control-points were linked with every key-
point, so when a key-point was moved its linked control-points were also moved to the same 
distance that allowed to hold a curve shape. 

Created sector was symmetrically mirrored to form the resulting valve model. Some of 
the corresponding key-points (the same on each mirrored sector) were grouped in 
dimensional pairs and linked by straight segments. The distance between key-points of one 
pair determined the size of a cell local part. When pair distance was changed, key-points and 
linked control-points moved which changed the shape of the adjacent Bezier curves and, 
consequently, the shape and size of a model part. To fit the model to a real cell, the 
distances between key-points should be set equal to the measured cell dimensions. Once 
created, the valve model can be used for many diatom species because of their similar 
shapes. 

The volume Vcyl and surface area Acyl of a diatom cylindrical model were calculated as: 
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where h – cell height; Abase – valve area; Pbase – valve perimeter. To find Abase and Pbase, smooth 
Bezier curves were transformed into closed polylines (polygons) consisting of points (xi, yi). 
Their areas and perimeters were calculated by the following equations (Weisstein 2004): 
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As it is difficult to measure cell height (Agbeti 1997), in the comparison of the two methods 
we assumed that model’s heights were equal. 

Calculated model volumes and surface areas were compared with parameters of 
similar geometric shapes recommended for the studied species (Hillebrand et al. 1999). 
Differences between the two groups of results were found. When they did not exceed 5 %, 
we can say that the geometric shapes can be used for the cell approximation. When 
differences were between 5–15 %, we can say that geometric figures are only a rough 
approximation of diatom shapes and preferably 3D models should be used. When 
differences exceed 15 % the 3D models were considered as the best alternative for diatom 
BV and SA estimation. Model construction and all calculations were done with the software 
developed by the author (see www.3d-diatoms.awardspace.info for more information). 

RESULTS 

A parametric model of the valve of Petroneis humerosa (Bréb. ex W.Sm.) Stickle & D.G. 
Mann and P. monilifera (Cleve) Stickle & D.G.Mann was created from photographs and 
description published by Jones et al. (2005). Model shape and sizes were controlled by six 
parameters (Fig. 1): a – the breath of central constriction; b – maximal valve breadth; c – 
rostrate pole breadth; e – rostrate pole length; l – length of valve without poles; w – full length 
of valve (not shown). 
 

 
 
Fig. 1. The model of Petroneis humerosa valve. Left. The model of valve consists of cubic Bezier curves: white 
circles are key-points (control-points linked with them are not shown); arrows indicate dimensional pairs; black 
squares are key-points that do not group into pairs (they are used for a preserve model shape). Right. Valve 
outlines generated by means of dimension pair sizes changing. 
 

The perimeter and area of the constructed model were compared to an ellipse that was 
recommended for the approximation of Petroneis (Hillebrand et al. 1999). Two tests were 
performed: 
1. In the first test, l-parameter was decreased from 2b to b and a-parameter was 

decreased from b to 0.8b. Results showed that the ellipse area exceeded the model 
area and the difference between them increased until 15 %, when both the length of 
valve without poles (l) and the valve middle breath (a) were decreased (Table 1). 
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2. In the second test, the pole sizes (c and e) were decreased jointly with the l and a, 
proportionally to l. When l was equal to 2b, c was equal to b/3 and e was equal to b/6. 
When l decreased to b, c decreased to b/4 and e decreased to b/12. Results showed 
the same as the previous test, but the differences between areas were lower (Table 1). 

In both tests, ellipse perimeter was lower than the model one, but the differences between 
perimeters were not exceeding 5 % and are not shown in the table. 

  
Table 2. Results of two tests. The differences between ellipses and model areas are shown. 
 

 l = 2.0 b l = 1.8 b l = 1.6 b l = 1.4 b l = 1.2 b l = 1.0 b
Test 1 a = 1.0 b  1.1 % 2.2 % 3.5 % 5.2 % 7.3 % 10.3 %
 a = 0.9 b 3.6 % 4.5 % 5.8 % 7.5 % 9.6 % 12.5 %
 a = 0.8 b 6.1 % 7.2 % 8.5 % 10.2 % 12.4 % 15.4 %
Test 2 a = 1.0 b 1.1 % 1.6 % 2.0 % 2.4 % 2.9 % 3.3 %

 a = 0.9 b 3.6 % 4.0 % 4.5 % 4.9 % 5.4 % 5.9 %
 a = 0.8 b 6.1 % 6.6 % 7.1 % 7.5 % 8.0 % 8.5 %

 
In the second test, the size reduction of P. humerosa and P. monilifera during cell-cycle was 
simulated. When a = 0.8b, it means a deep central constriction, which is not typical for 
modeled species (Jones 2005); so, these results are presented only for comparison.  

DISCUSSION 

Constructed models can be used for simulating diatom species, because many of them have 
similar shapes. The results of comparing 3D models with similar geometric figures allow the 
division of diatom species into two groups – simple-shaped and complex-shaped. The first 
ones can be well approximated by geometric figures; the second only by 3D models. 
P. humerosa and P. monilifera can be placed in the group of simple-shaped species. 

Besides the precise approximation of diatom shapes and the calculation of cell 
biovolumes and surface areas, the proposed models can also be used for imitating and 
studying cell cycles. 
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