GERALD PAROLLY & NORBERT KILIAN

Scorzonera karabelensis (Compositae), a new species from SW Anatolia, with a key to the subscapigerous Scorzonera species in Turkey

Abstract

Parolly, G. & Kilian, N.: Scorzonera karabelensis (Compositae), a new species from SW Anatolia, with a key to the subscapigerous Scorzonera species in Turkey. – Willdenowia 33: 327-335. – ISSN 0511-9618; © 2003 BGGM Berlin-Dahlem.

Scorzonera (sect. Nervosae) karabelensis, a subscapigerous, calcicolous perennial from the Karabel Geçidi in the Western Taurus range, SW Anatolia, Turkey, allied to S. pisidica and S. ulrichii, is described as a species new to science and illustrated. Its habitat conditions, conservation status and phytochoric significance are considered. A key to all facultatively or consistently subscapigerous, entire-leaved Scorzonera species growing in the mountains of Turkey is provided. Critical comparison revealed that the recently described S. gochneoglu and S. ayatchii are conspecific with S. ulrichii and S. rigida, respectively, and that the populations of S. pygmaea from the Çankırı and Zonguldak vilayets cannot be separated as a distinct subs. mutans. Additional data on the conservation status of S. ulrichii are given.

Introduction

The authors recently received from the pharmacist Robert Ulrich (Tübingen, Germany) specimens of a subscapigerous Scorzonera, collected in 2002 and 2003 in the Western Taurus Mts, SW Anatolia, Turkey. A particularly attractive, hitherto unknown subscapigerous Scorzonera gathered by the same collector some 250 km further east, in the Central Taurus Mts, had just been described as S. ulrichii Parolly & N. Kilian (Kilian & Parolly 2002). Ulrich’s new gathering, as he himself suspected, again proved to represent a species new to science. Its description, below, provides a suitable opportunity for contributing a key to all entire-leaved, subscapigerous species of Scorzonera growing in the mountains of Turkey and additional data on the conservation status of S. ulrichii.
Scorzonera karabelensis Parolly & N. Kilian, sp. nova

Holotype: Turkey, C2 Muğla: Fethiye - Korkuteli road, below Karabel Geçidi NE Kemer, 1040 m, steep, gravely, rocky slope, open *Pinus nigra* var. *caramanica* forest, N-exp., limestone, 20.5.2003, R. Ulrich 37/7a (B; isotypes: E, ISTE, herb. Parolly). – Fig. 1-2A.

Affinis *Scorzonerae pisidicae* Hub.-Mor., a qua foliis ± oblanceolatis, obtusis vel subacutis, 2-5 × 0.3-1.3 cm (nec lanceolatis vel ellipticis, longe acuminatis, 3-12 × 0.5-1.5 cm), caulibus floriferis debilibus, arcuato-ascendentibus, c. 2-7 cm longis, 1-2 foliatis (nec validis, erectis, (5-)10-15 cm longis, plurifoliatis) et achaeniis propter pilos densos antrosos appressos albo-sericeis (nec glabris) differt.

Subscapigerous perennial, 3-6 cm high, covered with a ± densely sericeous, appressed, white-glossy, ± evanescent indumentum of 3-5 mm long hairs, the green colour, however, always showing through. *Rootstock* cylindrical, branched or simple and with one or a few crowded leaf rosettes, almost without remains of the bases of former leaves. *Flowering shoots* one to several per rosette, weak, densely sericeous, ascending, 2-7 cm long, usually unbranched and bearing a single capitulum, with a few leaves in their basal part. *Leaves* entire, soft, concave, with flat margins, densely sericeous on both sides, ± glabrescent with age, the parallel veins little conspicuous; *rosette leaves* 2-5 × 0.3-1.3 cm, oblanceolate (sometimes very narrowly so), obtuse to acute and gradually narrowed towards the base; *cauline leaves* very similar to the rosette leaves but smaller and subacute. Flowering and fruiting *capitula* 13-16(-18) mm long, cup-shaped, with 15-20 flowers leaning against and little exceeding the involucral bracts. *Involucre* not lengthening significantly during anthesis, sericeous outside, glabrous inside; number and shape of involucral bracts variable; *outer involucral bracts* 6-8(-10), subulate to lanceolate, acute, $(1/2-3)/2(-2/3)$ as long as the inner bracts; *inner involucral bracts* (7)-8, linear-lanceolate, acute, subequal, 12-17 × 2-3 mm, often with up to 5 additional, ± linear innermost bracts, all adaxially green and with scarious margins. *Flowers* bright yellow, corolla 12-15 mm long, of that the tube c. 3 mm long (ir-
Fig. 2. Scorzonera karabelensis (A), S. ulrichii (B), S. pisidica (C). – A after R. Ulrich 3/7b, B after R. Ulrich 2/12, C after R. Ulrich 2/22; drawings by Alexander Ehler (BGBM).
reversibly shrinking at the end of anthesis), the limb c. 3.5 mm wide; anther tube (including basal and apical appendages) c. 5 mm long. *Achenes* [not fully mature] 5-6 mm long, slender, prismatic, smooth, densely covered with 3-6 mm long, snow-white, straight, soft, antorse, appressed hairs. *Pappus* 8-9 mm long, its bristles straw-coloured, plumose with white fimbriae in the basal portion and barbellate above.

Eponymy. – The name refers to the type and only known locality of the new species, the Karabel Geçidi (Geçidi = pass). The plants have been collected below the saddle.

Phenology. – *Scorzonera karabelensis* starts to flower in early May, with a main flowering period from mid May to mid June when the first fruiting specimens were collected. *S. ulrichii*, gathered at comparable altitudes (1200-1430 m; Kilian & Parolly 2002, Ünal & Göktürk 2003, as *S. gokcheoglui*), flowers at least one month later (June to August) and sets fruit till October.

Distribution. – As a local endemic of the Western Taurus (Fig. 3), *Scorzonera karabelensis* is hitherto only known from the upper slopes of the Karabel Geçidi below (= SE) the Akdümün Tepe (1742 m) in the greater Boncuk Dağları range and has a surprisingly narrow altitudinal range (1000-1100 m).

Site conditions and synecology. – The site requirements of *Scorzonera karabelensis* are strikingly similar to those of *S. ulrichii*. Both grow on limestone in montane black pine forest (*Pinus nigra* var. *caramanica* (Loudon) Rehder) with a very open canopy, at comparable altitudes (1200-1430 m and 1000-1100 m, respectively). *S. karabelensis* often grows in masses, as the dominant plant of the herb layer, on steep and gravelly N facing slopes and undulated flats. Densely appressed to the soil surface, it is easily overlooked due to the matching colour of the base rock and the plants’ indumentum. At places covered with a compact needle litter, it embellishes the forest floor prominently, locally growing together with *Pterocephalus pinardii* Boiss. Associated species include *Eryngium pseudothorifolium* Contandr. & Quézel (co-dominant) and, less often, *Centaurea cariensis* subsp. *niveotomentosa* (Hub.-Mor.) Wagenitz, *Ebenus reesei* Hub.-Mor. and *Verbascum bellum* Hub.-Mor. The last four taxa are endemics of the Western Taurus.

Recommended IUCN threat category. – Although there appears to be a strong, healthy population with hundreds of mature individuals, its extremely localised area implies a certain risk of extinction. Hence, *Scorzonera karabelensis* should be classified as “Vulnerable (VU)” according to criterion D of the IUCN Red List Categories (2001).

Relationship. – *Scorzonera karabelensis* belongs to the group of subacaulescent or subscapigeroius, perennial mountain species with a rosette of entire leaves and often a more or less dense indumentum, which in Turkey comprises some 20 species belonging to five different groups (Chamberlain 1975, Davis & al. 1988, Güner in Güner & al. 2000, Duran 2002, Duran & Sağiroğlu 2002, Kilian & Parolly 2002, Ünal & Göktürk 2003).

Together with the similar subscapigeroius *S. pisidica* Hub.-Mor., *S. cinerea* Boiss., *S. ulrichii* Parolly & N. Kilian [= *S. gokcheoglui* O. Ünal & R. S. Göktürk, *syn. nov.*] (and perhaps *S. boissieri* Lipsch. and *S. sandrasica* Hartvig & Strid), as well as the caulescent *S. argyreia* Boiss., *S. eriophora* DC., *S. latifolia* (Fisch. & C. A. Mey.) DC., *S. tomentosa* L. and *S. veratrifolia* Fenzl, *S. karabelensis* forms a presumably natural group, which has been named *S. sect. Nervosae* Lipsch. (Lipsic 1935). It comprises c. 15 caulescent and, more rarely, subacaulescent perennials, mainly distributed in the mountains of Turkey, the Caucasus, Iraq and Iran (Heller & Heyn 1993, Lipsic 1935, 1964, Rechinger 1977). The members of this section are characterised by rather broad, distinctly parallel-pluriveined, entire, soft, usually hairy leaves, a vertical, non-
tuberous rootstock, a weakly to well developed but always densely leafy flowering stem, usually narrow involucral bracts, and lanate or glabrous, smooth achenes with an often variably straw-coloured to rusty-red pappus.

Within Scorzonera sect. Nervosae, S. karabelensis shows a strong similarity to S. pisidica and, together with S. ulrichii and the two caulescent species S. argyrea (from Caria) and S. eriophora, forms a natural subgroup of closely allied taxa. S. karabelensis and S. pisidica share the sericeous, appressed, white-glossy, ± evanescent indumentum of 3-5 mm long hairs, a feature also present S. eriophora, that sets all of them clearly apart from S. ulrichii with its persistent, dense, white-tomentose indumentum of c. 2 mm long spreading hairs. The leaves of S. pisidica are lanceolate (to elliptic), long-attenuate into an acute tip, and with prominent veins, whereas those of S. karabelensis are ± oblanceolate, in general obtuse rather than acute, with much less distinct veins, and are also smaller. The short, weak and thin, ascending, only 1-2-leaved flowering shoot of S. karabelensis make for a conspicuous difference in habit when compared to the erect, strong, leafy shoots of S. pisidica, which appears to be short-caulescent rather than subscapigenous. The capitula of S. pisidica (involucrare well over 20 mm long) are clearly larger than those of S. karabelensis, and the outer involucral bracts are subulate and equal the inner in length. The achenes of S. karabelensis are densely covered with 3-6 mm long, antrorse, appressed hairs, but those of S. pisidica are entirely glabrous. Finally, S. pisidica, in contrast to the calicicolous S. karabelensis, seems to be an exclusive serpentinophyte, known only from a few neighbouring localities on ultramafic soils in C2 Burdur (Nydegger-Hügli 2000 [with photograph]; new record from Fethiye - Çameli road, Tuzla Beli, 14.6.2002, R. Ulrich [herb. Parolly]).

From the species with ovoid-spherical tubers of the Scorzonera lanata group (= S. sect. Tuberosae Lipsch.), including S. judaica Eig (= S. pseudolunata Grossh.) and S. sublanata Lipsch., S. karabelensis differs by its cylindrical taproot. From those with a caespitose or cushion-like habit of the Scorzonera sericea group (S. sect. Pulvinares Lipsch.), including S. sericea DC., S. rigidula A. Duran & Sağiroğlu, syn. nov., S. lasiocarpa D. F. Chamb., S. pyramid Sm., S. seidlitzi Boiss. and, probably, S. longiana H. Sümülcü, S. karabelensis differs by its softer and wider leaves. All but one species of the latter group have glabrous achenes (in S. rigidula the young achenes are sometimes pubescent, later glabrescent); the exception with lanate achenes is S. longiana, a tiny plant with leaves that are only 2-3 cm long and have an undulate margin.

The species of the Scorzonera suberosa group (S. subg. Pseudodospermum Lipsch.), including S. szowitzii DC., S. semicana DC., S. inaequiscapa Boiss., S. phaeopappa (Boiss.) Boiss., and S. suberosa K. Koch, differ from S. karabelensis in particular by glabrous achenes with a hollow base, often tuberous roots and, in the case of the last two species, by lilac or purplish flowers.

The single facultatively subscapigenous, name-giving representative of the Scorzonera parviflora group (S. sect. Parviflorae Lipsch.), in contrast to S. karabelensis, is entirely glabrous.

Phytogeography. – Scorzonera karabelensis, S. pisidica and S. ulrichii constitute a group of vicarious species (Fig. 3). S. karabelensis and S. ulrichii grow in different portions of the Taurus range, the former in the Western Taurus (Lycian Sector), the latter in the western part of the Central Taurus (Pisidian-Isaurian Sector), but in the same type of mountain forest (the forest communities are geo-vicariads, with sectorally differentiated herb and shrub layers). By contrast, S. pisidica (Western Taurus) is a substrate vicariant (specialised on ultramafic soils), morphologically closer to S. karabelensis.

Assuming that Scorzonera boisseri belongs to this group, it would be a pseudovicarious species (differing in alitudinal range and habitat, Chamberlain 1975) of the Cilician Sector, thus completing the often observed pattern of a tripartite division of the Taurus range (Parolly 1995; for the naming of phytogeographic units and the phytogeography of the Taurus System, see Parolly 2004).

The genus Scorzonera has an Irano-Turanian centre of diversity, with close to 70 species in the Flora Iranica area (Rechinger 1977). Turkey harbours 46 species, including the present addi-
tion. Thirty-three of the Turkish species represent the Irano-Anatolian chorotype in a wider sense: 16 Anatolian endemics of Irano-Anatolian origin (geno-elements) and 17 Irano-Anatolian species in the strict sense (Chamberlain 1975, Davis & al. 1988, Güner & al. 2000, Duran 2001, Duran & Sağiroğlu 2002). Scorzonera is known for including many widespread species along with steno-endemics such as S. argyrea, known from a single collection from Caria, S. pisidica from a small area in the Burdur and Muğla provinces (Fig. 3), S. sandrasica from Sandras Dağı, S. longiana from the Taşeli Plateau close to the S. ulrichii locality, S. boissieri Lipsch. from Bozoğlan Dağı in the Saimbeyli district, S. davisii Lipsch. and S. mirabilis Lipsch., both from the Hakkari-Taurus, to name only the taxa of the Taurus range.

Scorzonera karabelensis is one more steno-endemic of E Mediterranean (montane) origin, as opposed to the Irano-Anatolian distribution of S. sect. Nervosae in general. Its discovery provides additional support to an assumed secondary centre of speciation for this section in the E Mediterranean (S. argyrea, S. boissieri, S. pisidica, S. ulrichii), as may also be true for the S. sericea group (S. sect. Pulvinares).

Key to the entire-leaved subscapigerous Scorzonera species of the Turkish mountains

The following key includes all facultatively or consistently subscapigerous entire-leaved Scorzonera species of the Anatolian mountain ranges included as such in “Flora of Turkey”, its supplements and subsequent addition (Chamberlain 1975, Davis & al. 1988, Güner & al. 2000, Kilian & Parolly 2002). To these we add S. eriophora, which also can sometimes be subscapigerous (e.g., A2 Bilecik, inter Biledschik et Yenisheher, Bornmüller 5241 p.p.; A6 Sivas, Yıldız Dağ, Bornmüller 1651 p.p.; C2 Antalya, Elmalu, Bourgeau 168) and S. (sect. Incisae Lipsch.) violacea D. F. Chamb., which very occasionally combines entire leaves and a subscapigerous habit.

Description of the rootstock of Scorzonera semicana and S. szowitzii as either tuberous or cylindrical is contradictory in the standard floras (e.g. Chamberlain 1975, Lipšic 1935, 1964, Rechinger 1977). At least for the latter, all Anatolian material seen by us appears to be non-tuberous. We keep S. szowitzii as distinct from S. mollis M. Bieb. (following Lipšic 1935, 1964 and Rechinger 1977 rather than Chamberlain 1975).

The features given by Duran & Sağiroğlu (2002) to separate Scorzonera aytatchii from S. rigida fall fully within the range of variation observed in S. rigida. This holds true not only for

Fig. 3. Distribution of Scorzonera karabelensis (●), S. pisidica (+) and S. ulrichii (▲). – Indication of elevations over 2000 m based on Ekim & Güner (1986).
the quantitative but also for the qualitative characters: black involucral hairs are by no means restricted to the Aydos Dağı population described as *S. aytatchii*, but often occur in *S. rigida* plants from throughout the Bolkar Dağları range and, more rarely, is found scattered over its entire distributional area. The sparse, short-pilose achene indumentum is not restricted to *S. aytatchii* either. A survey of the rich *S. rigida* material kept at B clearly reveals a much more variable achene morphology than might be concluded from the literature, including (very rarely) shortly hispid (young) achenes, and achenes with hair tufts below the pappus.

The species named *Scorzonera gokcheoglui* by Ünal & Göktürk (2003) was discovered in the immediate neighbourhood of the type locality of *S. ulrichii* and both belong to one and the same species. Publication of the latter by Kilian & Parolly (2002) predates that of the former by several months.

Recent gatherings of *Scorzonera pygmaea* from the Taurus range (C3 Antalya, Beydağları, Eran Daği, J. J. Greuter & al. 86-979; C3 Isparta/Konya, Dedegöl Dağları, Parolly 6623) support the view that it is not possible to separate the plants from the Çankırı and Zonguldak vilayets as a distinct subspecies (subsp. *nutans* (Czezott) D. F. Chamb.) on account of their greater stem and leaf length.

The extremely brief treatment of *Scorzonera seidlitzii* by Chamberlain (1975) is rather misleading; adequate descriptions (as judged from the material at B) were given by Lipšíc (1935, 1964 with figure) and Rechinger (1977).

<table>
<thead>
<tr>
<th>1. Plants with a tuberous rootstock (but see also S. szowitzii)</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>– Plants with a cylindrical rootstock</td>
<td>6</td>
</tr>
<tr>
<td>2. Flowers yellow</td>
<td>3</td>
</tr>
<tr>
<td>– Flowers violet or purple</td>
<td>S. suberosa</td>
</tr>
<tr>
<td>3. Capitula ≥ 18 mm long; ovaries and achenes glabrous</td>
<td>4</td>
</tr>
<tr>
<td>– Capitula ≤ 16 mm long; ovaries and achenes lanate</td>
<td>5</td>
</tr>
<tr>
<td>4. Involucrum ≤ 25 mm long; achenes ≤ 7 mm long</td>
<td>S. inaequiscapa</td>
</tr>
<tr>
<td>– Involucrum 30-50 mm long; achenes 17-30 mm long</td>
<td>S. semicana</td>
</tr>
<tr>
<td>5. Leaves 2-4(-6) mm wide, margin flat; flowering shoots 10-25 cm long; achenes c. 4 mm long</td>
<td>S. sublanata</td>
</tr>
<tr>
<td>– Leaves (5-)8-15 mm wide, margin undulate; flowering shoots 3-10(-12) cm long; achenes c. 8 mm long</td>
<td>S. judaica</td>
</tr>
<tr>
<td>6. Plants pulvinate, base of rosette shoots densely clad with the persistent, rigid bases of former leaves; leaves usually rigid, 0.5-3(-4) mm wide</td>
<td>7</td>
</tr>
<tr>
<td>– Plants not pulvinate, rosette shoots with few or no old leaf bases; leaves usually soft, wider than 4 mm</td>
<td>11</td>
</tr>
<tr>
<td>7. Leaves and flowering shoots with a persistent, short, grey to yellowish, glossy, dense sericeous indumentum; flowers pure yellow abaxially; achenes 8.5-9 mm long</td>
<td>S. sericea</td>
</tr>
<tr>
<td>– Leaves sparsely lanate to subglabrous, rarely subsericeous, green to greyish green, usually glabrescent; flowers often suffused with pink abaxially; achenes ≤ 8 mm long</td>
<td>8</td>
</tr>
<tr>
<td>8. Plants caespitose; ovaries and achenes glabrous (rarely weakly pubescent in S. rigida)</td>
<td>9</td>
</tr>
<tr>
<td>– Plants not caespitose; ovaries and achenes densely lanate</td>
<td>S. lasiocarpa</td>
</tr>
<tr>
<td>9. Flowering shoots straight, erect, usually (6-)10-30 cm long; leaves subulate</td>
<td>S. rigida</td>
</tr>
<tr>
<td>– At least some flowering shoots flexuous, ascending, 2-10(-12) cm long; leaves obtuse to acute</td>
<td>10</td>
</tr>
<tr>
<td>10. Leaves linear to very narrowly oblanceolate, obtuse to broadly acute, 1-7 cm long, sparsely lanate to subsericeous, with < 2 mm long hairs; outer involucral bracts 3-5 mm long</td>
<td>S. pygmaea</td>
</tr>
<tr>
<td>– Leaves linear, (sharply) acute, often > 10 cm long, distally sparsely, basally more densely lanate, with hairs at least twice as long as the 1-3 mm wide leaves; outer involucral bracts 5-8 mm long</td>
<td>S. seidlitzii</td>
</tr>
</tbody>
</table>
11. Ovaries and achenes glabrous ... 12
 – Ovaries and achenes lanate or sericeous 19
12. Involucre (20-)25-50 mm long; achenes (10-)15-30 mm long (if < 15 mm then leaves 20-
 mm wide and abruptly contracted into a narrow base); flowers purplish or yellow . . 13
 – Involucre 10-25 mm long; achenes < 10 mm long; flowers always yellow 16
13. Leaves 8-35 mm wide .. 14
 – Leaves 2-5 mm wide .. 15
14. Leaves coriaceous, abruptly contracted into a narrow base, usually 20-35 mm wide; flowers
 violet ... S. violacea
 – Leaves not coriaceous, gradually tapering basally, ≤ 20 mm wide; flowers yellow
15. Flowers pinkish to purplish .. S. phaeopappa
 – Flowers yellow .. S. semicana
16. Leaves glabrous; plants of base-rich or subsaline marshes S. parviflora
 – Leaves lanate or sericeous; plants of dry habitats S. szowitzi
17. Leaves broadly ovate to ovate-lanceolate, < 2.5 times as long as wide ... S. boissieri
 – Leaves linear to narrowly lanceolate, > 3-4 times as long as wide 18
18. Hairs on leaves and flowering shoots 3-5 mm long S. pisidica
 – Hairs on leaves and flowering shoots up to c. 1 mm long S. cinerea
19. Rosette leaves greenish, hairs < 2 mm long 20
 – Rosette leaves white-tomentose or hairs 3-7 mm long 21
20. Rosette leaves weakly undulate, 2-3 cm long, greenish, sericeous; pappus cream; on lime-
 stone ... S. longiana
 – Rosette leaves strongly undulate, 3-6 cm long, shortly hispid, sparsely lanate to subglab-
 brous; pappus reddish-violet (on ultramafic soil) S. sandrasica
21. Entire plant persistently white-tomentose, feltty to the touch, hairs ≤ 2 mm long . . S. ulrichii
 – Plants greenish, or dirty white to yellowish, densely appressed-sericeous to lanate-pannose,
 glabrescent, hairs 3-7 mm long S. eriophora
22. Leaves (12-)15-30 mm wide, narrowly lanceolate, acute, tapering to a petiole-like base, dis-
 tinctly 5-9(-11)-veined; capitula 15-35 mm long; indumentum (also of achenes) dirty white
to yellowish; pappus rusty red ... S. karanbelenensis
 – Leaves 2-13 mm wide, narrowly oblanceolate, at least some obtuse, narrowed towards base,
 veins inconspicuous; capitula 13-16(-18) mm long; indumentum white, that of achenes
 snow-white; pappus straw-coloured S. karabelensis

Additional data on the conservation status of Scorzonera ulrichii

In July 2003 Robert Ulrich revisited the type locality of Scorzonera ulrichii at Emalysu (15 km S Çayarası, distr. Alanya) and its surroundings and communicated the following observations: in the course of nearby road building, a gravel work was constructed in the immediate neighbourhood of the type locality, where limestone rocks carted by large lorries are crushed under considerable dust emission. The broad lorry track runs dangerously close to the S. ulrichii site. The dust covers the entire area, and the plants are hidden under a white blanket.

Fortunately, two previously undiscovered, unaffected close-by colonies exist, each with more than 1000 individuals. In the steep, pine-covered slopes between 1250 and 1330 m, Anchonion elichrysifolium (DC.) Boiss., Astragalus pelliger Fenzl, Cephalaria gazipashensis H. Sümbül, Eryngium palmito Boiss. & Heldr., Hirterella lobelii (DC.) Dittrich, Origanum saccatum P. H. Davis, Peucedanum longifolium Waldst. & Kt. and Psephellus mucroniferus (DC.) Wagenitz were added to the list of associated species. Considering these new records together with the locality reported by Ünal & Göktürk (2003, as S. gokcheoglui), there seems to be no need to revise our assessment of S. ulrichii as “Vulnerable (VU)” under criterion D of the IUCN Red List categories.
Acknowledgements

We cordially thank Mr Robert Ulrich (Tübingen, Germany) for putting his material, including his field notes and photographs, at our disposal, and Prof. Werner Greuter for valuable comments on an earlier version of this paper. Mr Alexander Ehler prepared the habit drawings of Fig. 2, Horst Lünser the base map of Fig. 3.

References

Addresses of the authors:

Gerald Parolly, Institut für Biologie, Systematische Botanik & Pflanzengeographie, Freie Universität Berlin, Altensteinstraße 6, 14195 Berlin, Germany; e-mail: gparolly@zedat.fu-berlin.de

Norbert Kilian, Botanischer Garten und Botanisches Museum Berlin-Dahlem, Freie Universität Berlin, Königin-Luise-Str. 6-8, 14191 Berlin, Germany; e-mail: n.kilian@bgbm.org